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Abstract—A leader group selection approach that jointly
considers network controllability and control energy is investi-
gated in this work. Specifically, a dynamic multi-agent system
with signed acyclic topology is considered, where signed edges
capture cooperative and competitive interactions among agents.
To effectively and efficiently control the multi-agent system,
leader group selection in this work focuses on energy-related
controllability, which jointly considers two primary objectives:
1) network controllability, i.e., identification of a subset of
agents as leaders that can drive the entire network to a desired
state even in the presence of antagonistic interactions, and 2)
energy efficiency, which takes into account the control cost
incurred by the selected leaders in steering the network to
the desired state. To achieve these objectives, graph-inspired
characterizations of energy-related controllability are developed
based on the interaction between the network topology and the
agent dynamics. The developed topological characterizations
are exploited to derive heuristic leader selection algorithms
on signed acyclic graphs. Illustrative examples are provided
to demonstrate the effectiveness of the developed leader group
selection methods.

I. INTRODUCTION

Controllability, originally considered for dynamical sys-
tems, has recently seen renewed interest in the context of
networked systems with applications in robotic networks,
brain networks, social networks, and power grids. One pop-
ular approach is to cast the network controllability prob-
lem into a leader-follower framework, wherein the leaders
dictate the overall behavior of the network by influencing
the followers via the connectivity characteristics of the
network. Identifying the leaders that can render the network
controllable has generated substantial research interests [1]–
[6]. However, along with controllability, an important aspect,
from the practical applicability standpoint, that needs to be
considered is the energy needed to control the network.
For instance, a network might be controllable by a selected
leader group but the control energy required by the leaders
might be infeasible to allocate in practice. Therefore, this
work is particularly motivated to investigate energy-related
controllability in leader-follower networks to identify a group
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of leaders considering network controllability as well as
control energy.

Unsigned graphs that admit exclusively non-negative edge
weights are generally used to represent networks with coop-
erative relationships, such as average consensus [7], forma-
tion control [8], and cooperative timing [9]. To investigate
control energy in unsigned graphs, controllability Gramian
based metrics, such as the worst case control energy, aver-
age control energy, average controllability, and volumetric
control energy, have been extensively explored in the works
of [10]–[13] to provide quantitative measures of energy
required in network control. Based on these energy-related
metrics, the leader group identification problem was inves-
tigated in [14]–[17]. In [14], a projected gradient method
was developed to determine the key nodes with minimum
control cost in complex networks. The relationship between
network structure and minimum energy required to control
networked systems was studied in [15] to facilitate the
identification of the leader group. In [16], controllability
Gramian based metrics were employed to improve system
performance via the design of system dynamics and network
topology. Despite substantial progress, previous research
mainly focused on unsigned cooperative graphs. Many real
life networks, on the other hand, exhibit competitive inter-
actions in addition to cooperative behaviors. For instance,
social networks [18] are often characterized by amiable
and adversary relationships, and multiagent systems [19]
can also admit collaborative and competitive interactions. In
contrast to unsigned graphs, signed graphs that admit positive
and negative edge weights are suited to represent networks
with cooperative and competitive interactions [20]. However,
the controllability of signed graphs, especially considering
control energy expenditure, remains largely unattended in the
literature.

The presented work jointly investigates network control-
lability and control energy for leader group selection in
networked systems. In view of the aforementioned practi-
cal motivation, a dynamic multi-agent system with signed
acyclic topology is considered, where signed edges capture
potential cooperative and competitive interactions among
agents. The leader group selection is based on two primary
considerations: 1) network controllability, i.e., identification
of a small subset of agents as leaders such that the selected
leaders are able to drive the network to a desired state even
in the presence of antagonistic interactions, and 2) control
energy required to steer the network to the desired state by
the selected leaders. To this end, we consider an augmented
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controllability metric, referred to as energy-related control-
lability, which considers the classical network controllability
along with the notion of average controllability (i.e., control-
lability Gramian based control energy measures). Graph in-
spired characterizations of the energy-related controllability
are developed based on the interaction between the network
topology and the agent dynamics. The developed topological
characterizations are then exploited to derive leader selection
algorithms on signed acyclic graphs. Illustrative examples are
provided to demonstrate the effectiveness of the developed
leader group selection methods.

The contributions of this work are multi-fold. First, in
contrast to most existing approaches that focus on un-
signed graphs, this work characterizes network controllability
and control energy on signed networks, where classical
methods are no longer applicable due to the presence of
cooperative and competitive interactions. Second, graph-
inspired understandings of the relationship between leader
roles and network topology are developed to facilitate the
development of leader selection rules that jointly consider
network controllability and control energy. To the best of
our knowledge, the existing results do not consider energy-
related controllability for leader selection on signed graphs.
In addition, constructive examples are provided to illustrate
how the developed leader group selection algorithms can be
applied to general signed acyclic graphs.

II. PROBLEM FORMULATION

Consider a multi-agent system represented by an undi-
rected signed graph G = (V, E ,A), where the node set
V = {v1, . . . , vn} and the edge set E ⊂ V × V represent the
agents and their interactions, respectively. The network-wide
interactions are captured by the adjacency matrix A ∈ Rn×n,
where aij 6= 0 if (vi, vj) ∈ E and aij = 0 otherwise.
No self-loop is considered, i.e., aii = 0 ∀i = 1, . . . , n.
Without loss of generality, it is assumed that aij : E → {±1},
where aij = 1 if vi and vj are positive neighbors with
cooperative interactions and aij = −1 if vi and vj are
negative neighbors with antagonistic interactions. A path
of length k − 1 in G is a concatenation of distinct edges
{(v1, v2) , (v2, v3) , · · · , (vk−1, vk)} ⊂ E . A cycle is a path
with identical starting and end node, i.e, v1 = vk. In this
work, we focus on a particular class of graphs, namely
acyclic graphs, which does not have cycles. Tree or path
graphs are typical examples of acyclic graphs.

Graph G is connected if there exists a path between any
pair of nodes in V . The neighbor set of vi is defined as
Ni = {vj | (vi, vj) ∈ E}, and the degree of vi, denoted as
di ∈ Z+, is defined as the number of its neighbors, i.e.,
di = |Ni|, where |Ni| denotes the cardinality of Ni. The
signed graph Laplacian of G is defined as L (G) , D − A,
where D , diag {d1, . . . , dn} is a diagonal matrix.

Let x (t) = [x1 (t) , . . . , xn (t)]
T ∈ Rn denote the stacked

system states, where each entry xi (t) ∈ R represents the
state of node vi. Suppose the system states evolve according

to the following Laplacian dynamics:

ẋ (t) = −L (G)x (t) , (1)

where the graph Laplacian L (G) indicates that each node
vi updates its state xi taking into account the states of its
neighboring nodes, i.e., xj ∈ Ni. It is assumed that a set K =
{k1, . . . , km} ⊆ V of nodes, referred as leaders in the multi-
agent system, can be endowed with external controls. With
external inputs, the system dynamics in (1) can be rewritten
as

ẋ (t) = −L (G)x (t) +Bu (t) , (2)

where B =
[
ek1 · · · ekm

]
∈ Rn×m is the input matrix

with basis vectors ei, i = k1, . . . , km, indicating that the
ith node is endowed with external controls u (t) ∈ Rm. The
dynamics of (2) indicate that the network behavior is not
only driven by the graph Laplacian L, but also depends on
the input matrix B via the leader set K. Different leader sets
can result in different B, leading to drastic differences in the
capability of controlling a network, which is elucidated by
introducing the definition of leader-follower controllability.

Definition 1 (Leader-Follower Controllability). Provided
that the leaders are endowed with an exogenous input u (t), a
leader-follower network with dynamics in (2) is controllable,
if the system state x (t) can be driven to any target state by
a proper design of u (t).

The leader-follower controllability in Def. 1 indicates that
a network can be controllable in theory with appropriate
selection of leader nodes. However, it does not tell how
difficult it is to control the network in practice, i.e., how
much energy is needed to drive the network to the target
state. To provide energy-related quantification of network
control, the total control energy over the time interval [0, t]
is given by E (t) =

´ t
0
‖u (τ)‖2 dτ. Assuming the initial

state x (0) = 01 and the optimal control u (t) in [21], the
minimum control energy required to drive the system of (2)
from x (0) to a desired target state xt is

E (t) = xTt W
−1 (t)xt, (3)

where

W (t) =

ˆ t

0

e−LτBBT e−L
T τdτ, (4)

is the controllability Gramian at time t, which is positive
definite if and only if the system of (2) is leader-follower
controllable. In this work, we will focus on the infinite-
horizon Gramian, i.e., the case when t → ∞ in (3), due
to the consideration of asymptotic or exponential conver-
gence/stability of dynamics systems.

Since the controllability Gramian W provides an energy-
related measure of network control in (3), various energy

1For x (0) 6= 0, the minimum control energy required to drive the
system of (2) from x (0) to a desired target state xt is E (t) =(
xt − e−Ltx (0)

)T
W−1 (t)

(
xt − e−Ltx (0)

)
.
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metrics were developed based on W [10]–[13]. In this work,
a particular energy metric, namely average controllability
[11], is considered, which is defined as the trace of the
controllability Gramian tr (W ). If the multi-agent network
(2) is uncontrollable in certain direction in its state space,
then the eigenvalue of W corresponding to that direction will
be zero, resulting in infinite control energy in that direction
due to the inverse W−1 in (3). Likewise, if the system (2) is
controllable in a certain direction but with a small eigenvalue,
then more energy will be expanded for network control in
that direction due to (3). Consequently, as a sum of the
eigenvalues of W , tr (W ) characterizes the average difficulty
of network control in all directions and is inversely related
to the energy required in network control by (3). Although
various methods have been developed to maximize tr (W )
to improve energy efficiency, the issue with these approaches
is that the leader-follower controllability is generally not
guaranteed, since maximizing tr (W ) can not rule out the
possibility of having zero eigenvalues of W . Therefore,
the goal of this work is to develop leader group selection
approaches such that the resulting leader-follower system
has guaranteed network controllability and improved energy
efficiency in terms of the average controllability tr (W ).

III. TOPOLOGICAL CHARACTERIZATIONS OF
ENERGY-RELATED CONTROLLABILITY

Topological characterizations of the energy-related con-
trollability of signed acyclic graphs are investigated in this
section. Based on the topological structures, signed graphs
can be classified as either structurally balanced or structurally
unbalanced.

Definition 2 (Structural Balance). A signed graph G =
(V, E ,A) is structurally balanced if the node set V can be
partitioned into V1 and V2 with V1∪V2 = V and V1∩V2 = ∅,
where aij > 0 if vi, vj ∈ Vq , q ∈ {1, 2}, and aij < 0 if
vi ∈ Vq and vj ∈ Vr, q 6= r, and q, r ∈ {1, 2}.

Def. 2 indicates that vi and vj are positive neighbors if
they are from the same subset, i.e., either V1 or V2, and
negative neighbors if vi and vj are from different subset.
To characterize structural balance, necessary and sufficient
conditions are provided.

Lemma 1 (Gauge Transformation). [20] A connected signed
graph G is structurally balanced if and only if there exists
a diagonal matrix Φ = diag {φ1, . . . , φn} with φi ∈ {±1}
such that ΦAΦ has non-negative entries.

Lemma 1 indicates that, if G is structurally balanced, there
always exists a gauge transformation Φ and a corresponding
graph Ḡ =

(
V, E , Ā

)
with Ā = [āij ] ∈ Rn×n = ΦAΦ.

Clearly, Ḡ is an unsigned correspondence of G, since they
share the same node and edge sets except that the edge
weights in Ā are all non-negative, i.e., āij = abs (aij) ,
where abs (aij) denotes the absolute value of aij .

Theorem 1. Consider a signed graph G = (V, E ,A)
and its corresponding gauge transformed unsigned graph

Ḡ =
(
V, E , Ā

)
with the controllability Gramian W and W̄ ,

respectively. Let the nodes in G and Ḡ evolve according to
the dynamics (2) but with different adjacency matrices A
and Ā, respectively. If G is structurally balanced, W has
the same matrix spectrum as W̄ .

Proof: For the unsigned graph Ḡ, its nodes evolve
according to the following dynamics:

ẋ (t) = −Lu (G)x (t) +Bu (t) , (5)

where Lu = D − Ā is the graph Laplacian of Ḡ. The
controllability Gramian of (5) is defined in (4) as W̄ =´∞

0
e−LuτBBT e−Luτdτ. From Lemma 1, if G is structurally

balanced then Lu = D − Φ (A) Φ = ΦLΦ, which indicates
that

W̄ =

∞̂

0

e−ΦLΦτBBT e−ΦLΦτdτ

=

∞̂

0

Φe−LτΦBBTΦe−LτΦdτ

= ΦWΦ,

(6)

where W =
´∞

0
e−LτBBT e−Lτdτ is the controllability

Gramian associated with G. Since gauge transformation
preserves the matrix spectrum [20], i.e., ΦWΦ has the same
set of eigenvalues with W , it is clear from (6) that W has
the same matrix spectrum as W̄ .

Since W and W̄ have the same set of eigenvalues,
Theorem 1 indicates that G and its corresponding unsigned
graph Ḡ are equivalent in terms of average controllability,
i.e., tr (W ) = tr

(
W̄
)
. In addition, for other energy-related

metrics [11] that are based on the controllability Gramian,
such as the smallest eigenvalue λmin (W ), the trace of
the inverse of the controllability Gramian tr

(
W−1

)
, the

determinant det (W ), and the rank rank (W ), Theorem 1
implies that G and Ḡ are equivalent in these metrics if
G is structurally balanced. Therefore, Theorem 1 provides
a means to investigate the energy-related controllability of
signed networks by examining its corresponding unsigned
graph Ḡ, where many existing analysis and design methods
developed for unsigned graphs become available.

Corollary 1. Consider a signed graph G = (V, E ,A)
and its unsigned correspondence Ḡ =

(
V, E , Ā

)
. If G is

structurally balanced, the leader-follower controllability of
G is equivalent to that of Ḡ under the the same leader set.

It is well known that a system is controllable if and
only if its controllability Gramian is positive definite. Thus,
Corollary 1 follows immediately from Theorem 1 by the fact
that W and W̄ share the same set of eigenvalues when G is
structurally balanced.

Remark 1. Leader group selection on structurally balanced
signed graphs has been partially studied in the work of
[22], which requires the leaders to be selected from the
same partitioned set (i.e., V1 or V2) to ensure network
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controllability. Corollary 1 relaxes such a constraint allowing
leaders to be selected from different partitioned sets, as
long as the corresponding unsigned graph is controllable
under the selected leader group. In addition, the discovered
equivalence of controllability between G and Ḡ enables the
use of existing leader group selection methods developed for
unsigned graphs [1]–[4].

Corollary 2. If G = (V, E ,A) is a signed acyclic graph,
there always exists an unsigned correspondence Ḡ =(
V, E , Ā

)
, such that the controllability Gramian W of G has

the same matrix spectrum as the W̄ of Ḡ.

Since acyclic graphs, e.g., tree or path graphs, are in-
herently structurally balanced [20], Corollary 2 is another
immediate result of Theorem 1. Corollary 2 indicates that,
instead of investigating the signed acyclic graph G, its
unsigned correspondence Ḡ can be explored to enable leader
group selection for improved control energy in terms of
tr (W ).

Specifically, let dij ∈ R+ denote the the distance between
vi and vj in G, i.e., the number of edges of the shortest path
connecting vi and vj . The total distance of node i to all other
nodes, often referred as the closeness of node i, is defined
as σi =

∑
j 6=i dij . An important result from [17] is that, for

unsigned graphs, tr (W ) is proportional to the node closeness
on acyclic graphs. In other words, selecting nodes with higher
closeness values can improve tr (W ) , which implies reduced
control energy, since tr (W ) is inversely related to the total
control energy by (3). However, as discussed earlier, simply
selecting leaders that maximize tr (W ) may not guarantee
the leader-follower controllability. Therefore, based on our
recent result [23], the subsequent section focuses on the
development of leader group selection algorithms that jointly
consider the leader-follower controllability and the average
controllability tr (W ).

IV. LEADERS SELECTION ON SIGNED ACYCLIC GRAPHS

The leader group selection method developed in this
section consists of two steps. The first step is to identify
a set of leader group candidates that can render the network
controllable. Among these candidates, the energy metric
tr (W ) will be exploited in the second step to refine the initial
selection by identifying leaders that require less control
energy. Specifically, based on the result of [23] that a network
is controllable if each sub-graph is controllable and the sub-
graphs are connected via the leaders only, the first step is
to partition the graph into a set of sub-graphs, where the
sub-graphs are connected via leaders. Further, acyclic graphs
generally take the form of a tree structure, which has path
graphs as its basic building block. Therefore, acyclic signed
graphs such as tree graphs can always be partitioned into a
set of path graphs using the available partition methods [24].
The following lemma from [23] summarizes the leader group
selection rules on signed path graphs.

Lemma 2. Consider a signed path graph Gp = (V, E ,W)
with the node set V = {1, . . . , n}, the edge set E =

1 2 3 4

5 6

--

-

Figure 1. Node closeness on the signed acyclic graph.

{ (i, i+ 1)| i ∈ {1, . . . , n− 1}}, and the weight matrix W ∈
Rn×n indicating associated positive or negative weights in
E . Let the nodes in Gp evolve according to the dynamics in
(2). The signed path graph Gp is controllable if the leader
group is selected according to either of the following rules:
1) selecting an end node as the leader, i.e. v1 or vn; or
2) selecting any two connected nodes as the leaders, i.e.,
vi, vj ∈ Vl with (vi, vj) ∈ E .

Once the initial selection following Lemma 2 is complete,
the next step is to refine the initial selection based on tr (W )
for improved energy efficiency. Note that other leader group
selection approaches originally developed for unsigned path
graphs [5] are also applicable due to Corollary 2.

Lemma 3. For a signed path graph Gp, the closer the node
i to the end node of Gp, the higher its closeness σi.

Lemma 3 is an immediate result of the fact that, if a node
is closer to the end of the path graph, it has greater total
distance to the other nodes, i.e., a higher closeness value. It
was proven in [17] that selecting nodes with higher closeness
as leaders can improve the average controllability. Although
Lemma 3 is applicable to path graphs, it is alone insufficient
to characterize the energy-related controllability of general
acyclic graphs consisting of multiple path graphs.

Example 1. Consider a signed acyclic graph GT composed
of 6 nodes as shown in Fig 1, where negative edges are
marked with “-”. Suppose v6 is a leader and it can be
verified that GT is controllable if either v1 or v4 is selected
as an additional leader. Due to the relationship between node
closeness and average controllability, it is desirable to select
nodes with larger closeness values. For the sub-path graph
{v1, v2, v3, v4}, clearly v1 and v4 has the same closeness
from Lemma 3. However, due to the additional sub-path
graph {v5, v6}, it can be verified that the closeness of v1

and v4 in GT are σ1 = 11 and σ4 = 13, respectively. Thus
v4 should be selected as the additional leader to reduce the
control cost.

Motivated by the discussion in Example 1, the subsequent
lemma quantifies the influence of sub-path graphs on node
closeness.

Lemma 4. Consider a sub-path graph G1 = (V1, E1,A1)
and let σ̄ij be the closeness difference of vi and vj on G1.
Suppose G1 is augmented by connecting another sub-path
graph G2 = (V2, E2,A2) with cardinality h = |V2| via an
edge (vp, vq), where vp ∈ V1 and vq ∈ V2. In the augmented
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graph, the closeness difference of vi and vj , denoted as σij ,
is obtained as

σij = σ̄ij + h (dip − djp) , (7)

where dip and djp represent the distance from vi to vp and
vj to vp, respectively.

Proof: From the definition of closeness, σi =∑
k∈V1 dik +

∑
l∈V2 dil and σj =

∑
k∈V1 djk +

∑
l∈V2 djl.

Therefore, σij can be obtained as

σij = σi − σj = σ̄ij +

(∑
l∈V2

dil −
∑
l∈V2

djl

)
. (8)

Note that, for any node vo ∈ V2 in G2, one has dio − djo =
(dip + dpo) − (djp + dpo) = (dip − djp) + (dpo − dpo) =
dip − djp. Therefore, (8) can be simplified as σij = σ̄ij +
h (dip − djp), since G2 consists of h nodes.

Lemma 4 shows that the closeness difference of any two
nodes in a general acyclic graph depends on h, σ̄ij , and
dip − djp, each of which can easily be obtained from its
sub-path graph. For instance, in Example 1, the closeness
difference of v1 and v4 in GT can be calculated from the
sub-path graph with nodes {v1, v2, v3, v4}. According to (7),
σ14 = σ̄14 +h (d12 − d42), where σ̄14 =

∑
k∈{1,2,3,4} d1k −∑

k∈{1,2,3,4} d4k = 6 − 6 = 0, d12 = 1, d42 = 2, and
h = 2 is the cardinality of graph {v5, v6}. Thus, σ14 = −2,
which indicates v4 is a better leader candidate than v1 in
terms of average controllability. Note that following similar
analysis, Lemma 4 can be extended to the case of multi sub-
path graphs.

Motivated by the discussion above, Algorithm 1 sum-
marizes the heuristic leader selection rules. It starts by
identifying nodes in a given acyclic signed graph whose node
degree is greater than two. Since the joint nodes in the acyclic
graph have degree higher than two, the reason to identify
nodes degree more than two is to facilitate the partition of
the acyclic graph into paths. Once the graph is partitioned
into a set of path graphs, the leader selection rules developed
in Lemma 2 and Lemma 4 can be applied to identify leader
groups with ensured network controllability and improved
average controllability. The following example is provided
to elucidate the approach.

Example 2. Consider a signed acyclic graph G in Fig. 2
(a) with the objective of selecting a set of leaders with
ensured network controllability and improved energy ef-
ficiency. Based on Algorithm 1 the initial leader set is
identified as nodes with degrees more than two, i.e., the
nodes {1, 2, 4, 10, 16} in Fig.2 (b). Since a graph can be
safely partitioned without affecting the network controllabil-
ity using leader to leader connections [23], G is partitioned
into two sub-path graphs {1, 3, 7, 12, 17} and {4, 8, 9, 13},
respectively, and a sub-tree with the rest nodes as shown in
Fig. 2 (c). The next step is to update the leader set ensuring
each partitioned graph is controllable. Specifically, the sub-
path graph {1, 3, 7, 12, 17} is controllable with leader v1

Algorithm 1 Leader Selection for Signed Acyclic Graph

procedure INPUT:(Graph G (V, E,A));
Output: The set of leaders Vl

Calculate the node degree di for each node vi ∈ V ;
Select nodes vi with di > 2 to form Vl;
Use graph partition techniques (e.g., [24]) to partition G into path graphs;
for Each sub-path graph do

if The path is controllable then
Keep the selected leaders in Vl;

else
Update Vl by including nodes that can render the sub-path graphs

controllable (i.e., Lemma 2);
Further update Vl for improved average controllability (i.e., Lemma 4);

end if
end for
Output Vl;

end procedure
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Figure 2. (a) A signed tree with 23 nodes. (b) The initial selection of
leader nodes (i.e., nodes with degree higher than two) are marked. (c) The
signed tree is partitioned into a set of path graphs. (d) Based on Lemma 2
and 4, the leader set is updated for ensured leader-follower controllability
and improved average controllability.

from Lemma 2. For the other sub-path graph {4, 8, 9, 13},
selecting any one node from the set {v8, v9, v13} along with
v4 can ensure its controllability. According to Lemma 4,
v13 is the best candidate, since it has a higher closeness
value than v8 and v9, and thus provides better average
controllability. Therefore, v13 is selected as an additional
leader, as shown in Fig.2 (d).

Now consider sub-tree of G in Fig. 3 (a), which can
be further partitioned into sub-path graphs according to
Algorithm 1. Suppose that the sub-tree is partitioned into
{15, 19}, {20}, and a long sub-path graph shown within the
dashed region, as shown in Fig. 3 (b). According to Lemma
2, v15 and v20 have to be selected as leaders so that the two
sub-graphs {15, 19} and {20} are controllable and the sub-
graphs are connected by leaders only. For the sub-path graph
within the dashed region, it is observed from Lemma 2 that
any node except v18 from the path can render this sub-path
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Figure 3. (a) The sub-tree of G. (b) Identification of a sub-path graph. In
(c) and (d), the leader group is updated based on Algorithm 1.

graph controllable. To improve average controllability, the
node with the highest closeness value should be selected as
the leader. It can be verified from Lemma 4 that v23 has the
highest closeness value, and thus selected as the leader, as
shown in Fig. 3 (d). Therefore, the marked nodes in Fig. 2
and 3 indicate the final selection of leaders that can ensure
network controllability with improved control cost.

Remark 2. Note that Algorithm 1 is based on partitioning
an acyclic graph into a set of sub-path graphs. There may
exist different ways to partition an acyclic graph, resulting
in different leader sets. In addition, the leader selection rules
developed in Algorithm 1 are only sufficient conditions for
network controllability. The selected leader group are by no
means the optimal set, in terms of the minimum number of
leaders or the minimum control cost. Nevertheless, this work
is one of the first attempts to address leader group selection
on signed graphs that jointly considers network controllabil-
ity and control energy. Future research will continue along
this direction to further refine the developed leader selection
methods.

V. CONCLUSION

In this paper, leader group selection on multi-agent sys-
tems with signed acyclic topology is investigated. Graph-
inspired approaches are developed to facilitate the identi-
fication of leaders that can ensure network controllability
and improve energy expenditure required in network control.
Since the current work is developed based on acyclic graphs,
additional research will focus on extending the developed
leader selection approach to general signed graphs.

REFERENCES

[1] A. Rahmani, M. Ji, M. Mesbahi, and M. Egerstedt, “Controllability
of multi-agent systems from a graph-theoretic perspective,” SIAM J.
Control Optim, vol. 48, no. 1, pp. 162–186, 2009.

[2] G. Notarstefano and G. Parlangeli, “Controllability and observability
of grid graphs via reduction and symmetries,” IEEE Trans. Autom.
Control, vol. 58, no. 7, pp. 1719–1731, 2013.

[3] A. Chapman, M. Nabi-Abdolyousefi, and M. Mesbahi, “Controllability
and observability of network-of-networks via Cartesian products,”
IEEE Trans. Autom. Control, vol. 59, no. 10, pp. 2668–2679, 2014.
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